
1

Studying the impact of security patterns on software
architecture design through CWE weaknesses analysis and

reverse engineering case study

PhD student name: Monica Buitrago1, Ph.D. start date: 01/2021, Expected defense date:
01/2024, advisors:, Isabelle Borne1, and Jérémy Buisson2

1 Université de Bretagne Sud, IRISA, Vannes, France
monica-johana.buitrago-ramirez@univ-ubs.fr - isabelle.borne@univ-ubs.fr

2 Écoles de Saint-Cyr Coëtquidan, IRISA, Guer, France
jeremy.buisson@irisa.fr

Abstract. Designing a secure software system is a challenging task in constant evolution, as
is measuring the security level of the software architecture. To solve this, some authors have
proposed to design the architecture using security patterns to mitigate vulnerabilities. On the
one hand, there are different sets of metrics to evaluate software quality attributes, but there
are no security metrics to evaluate the efficiency of the patterns or the security level of the
system from its design. For this reason, we selected a list of known and widely used patterns,
and we studied the relationships between patterns and the Common Weakness Enumeration
(CWE) database. This study aims to mitigate vulnerabilities caused by weaknesses in the
software. On the other hand, we have chosen a case study, a software developed by a third
party (Bitwarden) which is representative of a secure and commercial software architecture.
We reverse-engineered the application to extract all the data that make this system secure,
such as the security patterns involved in its design. We also propose, with the obtained data,
to find a way to quantitatively evaluate the security level of the software architecture.

Keywords: Software architecture · Security by design · Security patterns · Reverse engi-
neering.

1 Introduction

With the current context of cybersecurity threats, engineers become better aware of the need that
the systems they develop must take into account the security concern. In this context, there is a
challenge: being able to decide, as soon as design-time, whether a system will be sufficiently secure,
and adapt the design decisions accordingly.

To address this challenge, security patterns have been proposed, for example, by Fernandez
et al. [18,11], as a catalog of security-related problems and solutions. Some studies show that the
implementation of patterns is used to detect vulnerabilities, mitigate security threats, and increase
the quality of software. The underpinning idea of security patterns is to capture expert knowledge
in the form of documentation with a specific structure that contains proven solutions for recurring
problems, here in the domain of security. Though, Yskout et al. [20] question the effectiveness of
security patterns, as their empirical experimentation does not yield any clear conclusion.

In addition to security patterns, one can think that the higher the complexity and use of sensitive
operations in a system, the higher the risk that this system may contain exploitable vulnerabilities
[6,14]. So, metrics may provide some quantitative assessment on the chances that a system reaches

2

a desired security level, possibly as soon as the design phase if the metrics apply to design artifacts
such as the architecture. Though, many previous works in this area focus on code metrics instead
[4,8,14,17].

In this paper, we show our proposal to address these two research gaps, both the evaluation of the
effectiveness of safety standards and the lack of specific metrics to measure the security of a software
at the architecture level. In the following section we present works related to the use of security
patterns and metrics in software architecture, as well as works that propose similar methodologies
to ensure and guarantee software security from its design. In section 3, we present our progress in
exploring the architectural CWE in relation with the existing security patterns. For this purpose,
we selected the list of security patterns described in the books [18,11], as a tool to mitigate software
weaknesses which in turn cause vulnerabilities. From the description of each pattern in the book,
we studied which patterns could mitigate weaknesses mentioned in CWE’s Architectural Concepts
view [3]. That is, one or several patterns may mitigate one or several weaknesses. In section 4, we
apply a reverse engineering methodology to a known application (Bitwarden), developed by a third
party and with characteristics representative of a secure software architecture, as a case study. This
methodology is composed of two stages: data extraction from the software architecture and data
experimentation to measure the security level in the application. Finally, the section 5 presents the
conclusions of the paper and points out future work.

2 Related work

Except complex or change-prone ones like decorator and template method, design patterns are
known to improve correctness, performance and security quality attributes [10]. But, Feitosa et
al. [10] studied only using GoF’s general-purpose patterns and at the class level, so when the
detailed design is available. Patterns can also be used to detect vulnerabilities [13,19] and mitigate
security threats [5,16]. In the PhD project, we intend to consider the coarser-grained architecture,
which comes sooner in the design process, and we specifically target security concerns.

Several metrics were proposed to measure various software attributes, such as complexity and
variability [12,19,7,8,10,9]. Some metrics are specifically targeted at security [5,15]. Chondamrongkul
et al. [5] proposed an analysis for the architecture of microservice-based software systems, to score
the attack surface, defense in depth, least privilege, compartmentalization, man in the middle
(MitM) and denial of service (DoS). To do so, they use an ontology reasoner to detect patterns for
each of these scores. The approach is mostly based on the deployment view of the architecture.

Sejfia et al. [19] focused on vulnerability detection in software architectures, using a similar-
ity metric to compare with vulnerability patterns by means of graph alignment and hierarchical
agglomerative clustering. But, according to the reported results, neither methodology was success-
ful, due to problems of computational cost and applicability in real-life scenarios. Besides, their
objective is different, since they sought to represent a group of similar vulnerabilities by using a
self-developed pattern.

3 Mitigating vulnerabilities through patterns

We selected Schumacher et al.’s security patterns [18] because, according to Google Scholar, they are
widely cited. In parallel, CWE [3] enumerates 918 typical weaknesses that are common in software
and hardware systems, of which 223 weaknesses concern architectural concepts.

3

Table 1: Results - patterns to mitigate the weaknesses from Authenticate Actors category.
CWE Category # Weakness Pattern Frequency Results

Authenticate
Actors

28

Password
Design and
Use

11 Although [18] gives 21 patterns related to user
identification and authentication (I&A), the 28
weaknesses can be mitigated using 3 patterns. In-
deed, in the I&A category, CWE do not detail
weaknesses related to Biometrics and Hardware
Token mechanisms, such as Face Recognition, Fin-
ger Image, Magnetic Card and One-Time Pass-
word Token Smart Card, among others from [18].

Automated
I&A Design
Alternatives

7

I&A
Requirements

10

From the description of each pattern, we investigated which ones can mitigate the weaknesses
from CWE’s Architectural Concepts view (CWE-ACV). The Table 1 shows an excerpt of this
relation that we established between CWE and security patterns. The first column gives the CWE
category, followed by the amount of weaknesses in that category according to the CWE database.
The third column lists the patterns that can be used to mitigate the weaknesses of the category, as
well as the amount of weaknesses mitigated by each individual pattern. The last column comments
the CWE category, e.g., stating that 3 of 21 patterns of the I&A category and sufficient to mitigate
all the weaknesses of the CWE’s authenticate category.

The pattern-weakness relationship was established according to our research, knowledge and
experience. However, categories with a higher number of weaknesses tend to be more complex to
relate and mistakes could be made. To overcome this threat to validity, we rely on the CWE’s
research concepts view (CWE-RCV), which organizes the weaknesses in a hierarchy. With this
additional information, we deduce whether a pattern can mitigate several weaknesses, i.e., a subtree
in the hierarchy. The figure 1 shows the position of 6 weaknesses (in green - given by their CWE
identifier) of the audit category in the CWE-RCV hierarchy. In the figure, 5 of them (identifiers
223, 778, 224, 532, and 779) belong to the same parent pillar 664 (improper control of a resource
through its lifetime), which indicates they are related. So, these 5 weaknesses might be mitigated
by the same security patterns. On the other hand, weakness 117 has a different parent pillar. So,
its mitigating pattern may be another pattern.

4 Case Study: Bitwarden

To experiment our proposal, we study the Bitwarden case. This application is a password manager,
that users can use to store and share passwords securely. We select this application for the following
reasons: (1) The developers claim a high level of security by regular audits, research, certifications,
among other reasons explained extensively on their website1. The application has millions of users,
which reflects a good reputation and a high level of trust. (2) The application adopts the typi-
cal distributed multi-tiers architecture, with several front-ends (smartphone applications, desktop
clients, web site, browser plugins), a back-end and a database. (3) It is an open source application
hosted on GitHub, this allows us to explore and evaluate it.

1 https://bitwarden.com/ (visited on 19/04/2022).

https://bitwarden.com/

4

Pillar - Father weakness

CWE-664: Improper Control of
a Resource Through its Lifetime

CWE-693: Protection Mechanism
Failure

CWE-707: Improper Neutralization

Child weaknesses

Weaknesses from Audit category
in Architectural Concepts

668

117

200 532

400

538

779

116

221 223

224

778

Fig. 1: Maping CWE’s Architectural Concepts view into Research Concepts view - audit category

Client Architecture Cloud Server Architecture

Controlers

Api Service

Security pattern example:
 protected entry point

Fig. 2: Example of security pattern in a software architecture.

The Figure 2 shows an example of a software architecture (excerpt showing a front-end client
and a back-end server) where a security pattern is found by modeling it, here the protected entry
point pattern [11]: access to the server pass through well-identified entry points, ASP.Net Core
controllers in the Bitwarden case, which are the typical locus, e.g., for policy enforcement points.

Figure 3 summarizes the process that we apply to the case study. As a first step, we consider
only the web site and the back-end.

In the stage 1, we perform reverse engineering of Bitwarden, to recover its architecture from its
source code. First, we extract the UML class diagram. The web site client code has 775 elements
(classes and interfaces) and the server contains 1058 elements. Of these elements, we retain only
those involved with the internal service-based structure and the client-server relationship (website
108 elements and server 197 elements). Noticeably, in the website, we drop all the elements related
to the graphical user interface.

Both the website and the server are internally built as compositions of services. In the Bit-
warden’s class diagram, the pattern for service implementation and dependencies is simple and
homogeneous. So, we abstract the structure of the website and of the server as a graph of ser-

5

Data Experimentation

Data Experimentation

Data extraction
Finding patterns by
applying algorithms

Measuring the security level of the
architecture

Applying graph theoryUml modeling

Classname

Classname

0..1
1

Classname

Classname

1..*

Classname Classname

0..* 1

Classname

<<Interface>>
Interface

+ field1: Type
+ field2: Type

+ method1(Type): Type
+ method2(Type, Type): Type

1..*
1

+ field: type

+ field: type

+ field: type

+ method(type): type

+ field: type

+ field: type

+ method(type): type

+ field: type

+ field: type

+ method(type): type

+ method(type): type

+ method(type): type

+ field: type + field: type

+ field: type

+ method(type): type

+ method(type): type

+ field: type

+ field: type

+ method(type): type

+ method(type): type

+ field: type

+ field: type

+ method(type): type

A

B

C D E F

G

H

I

J

Parameter x
x1 x2 x3

Type 1

Type 2

Type 3

Parameter y

y1

y2

y3

x4

1 2

Fig. 3: Analysis methodology.

vices and dependencies. Then, we attempt to apply known algorithms, such as finding strongly
connected components and clustering, in order to find composite structures and abstract even more
the structure of the software.

In the stage 2, we plan to investigate a set of metrics to measure the level of security. As a first
step, with the pattern of Figure 2 in mind, one of our ideas is to focus the metrics on the edges
connecting composite structures.

5 Conclusion

Based on the two research gaps found in the literature review and the security problem in software
architectures, we propose to use a list of established security patterns to mitigate vulnerabilities
from the software architecture design and measure the effectiveness of their implementation using
a quantitative evaluation system.

First, we study the relationship between security patterns and weaknesses in CWE, the results
are shown in section 3. According to the description of the selected patterns and weaknesses, the
patterns could mitigate the vulnerabilities caused by the weaknesses.

Moreover, we analyze the Bitwarden software architecture to serve as our case study, since
its architecture is representative of many other real-world systems. The Bitwarden study is still
in progress. We are still experimenting to find suitable composites. In parallel, we start the data
experimentation stage, where we can observe some security-related patterns and we search for
metrics that characterize their presence. The next step will be data experimentation, where we will
develop a catalog of metrics to measure the security level of the software architecture.

In our future work, we also intend to study CAPEC [2] and ATT&CK [1] frameworks, which
describe the attack techniques. Our long-term goal is to propose a metrics/pattern-based approach
to assess the risks of attacks and weaknesses identified in the existing corpus.

References

1. ATT&CK®, https://attack.mitre.org/
2. CAPEC - Common Attack Pattern Enumeration and Classification (CAPEC™), https://capec.mitre.

org/

3. CWE - Common Weakness Enumeration, http://cwe.mitre.org/
4. Alshammari, B., Fidge, C., Corney, D.: Security Metrics for Object-Oriented De-

signs. In: 2010 21st Australian Software Engineering Conference. pp. 55–64 (Apr 2010).
https://doi.org/10.1109/ASWEC.2010.34

https://attack.mitre.org/
https://capec.mitre.org/
https://capec.mitre.org/
http://cwe.mitre.org/
https://doi.org/10.1109/ASWEC.2010.34

6

5. Chondamrongkul, N., Sun, J., Warren, I.: Automated Security Analysis for Microservice Architecture.
In: 2020 IEEE International Conference on Software Architecture Companion (ICSA-C). pp. 79–82
(Mar 2020). https://doi.org/10.1109/ICSA-C50368.2020.00024

6. Chowdhury, I., Zulkernine, M.: Can complexity, coupling, and cohesion metrics be used as early in-
dicators of vulnerabilities? In: Proceedings of the 2010 ACM Symposium on Applied Computing. pp.
1963–1969. SAC ’10 (Mar 2010). https://doi.org/10.1145/1774088.1774504

7. Dalla Palma, S., Di Nucci, D., Palomba, F., Tamburri, D.A.: Toward a catalog of software quality
metrics for infrastructure code 170, 110726. https://doi.org/10.1016/j.jss.2020.110726

8. Du, X., Chen, B., Li, Y., Guo, J., Zhou, Y., Liu, Y., Jiang, Y.: Leopard: identifying vulnera-
ble code for vulnerability assessment through program metrics. In: Proceedings of the 41st In-
ternational Conference on Software Engineering. pp. 60–71. ICSE ’19, IEEE Press (May 2019).
https://doi.org/10.1109/ICSE.2019.00024

9. El-Sharkawy, S., Krafczyk, A., Schmid, K.: MetricHaven: More than 23,000 metrics for measuring qual-
ity attributes of software product lines. In: Proceedings of the 23rd International Systems and Software
Product Line Conference - Volume B. pp. 25–28. SPLC ’19. https://doi.org/10.1145/3307630.3342384

10. Feitosa, D., Ampatzoglou, A., Avgeriou, P., Chatzigeorgiou, A., Nakagawa, E.Y.: What can violations
of good practices tell about the relationship between GoF patterns and run-time quality attributes? In-
formation and Software Technology 105, 1–16 (Jan 2019). https://doi.org/10.1016/j.infsof.2018.07.014

11. Fernandez-Buglioni, E.: Security Patterns in Practice: Designing Secure Architectures Using Software
Patterns. Wiley (May 2013)

12. Iacob, M.E., Monteban, J., Sinderen, M.v., Hegeman, E., Bitaraf, K.: Measuring enterprise architecture
complexity. In: 2018 IEEE 22nd International Enterprise Distributed Object Computing Workshop
(EDOCW). pp. 115–124. https://doi.org/10.1109/EDOCW.2018.00026

13. Jasser, S.: Enforcing Architectural Security Decisions. In: 2020 IEEE International Conference on Soft-
ware Architecture (ICSA). pp. 35–45 (Mar 2020). https://doi.org/10.1109/ICSA47634.2020.00012

14. Morrison, P., Moye, D., Pandita, R., Williams, L.: Mapping the field of software life
cycle security metrics. Information and Software Technology 102, 146–159 (Oct 2018).
https://doi.org/10.1016/j.infsof.2018.05.011

15. Márquez, G., Taramasco, C., Astudillo, H.: Defining security metrics to evaluate electronic health
records systems: A case study in chile. In: 2020 IEEE International Conference on Software Architecture
Companion (ICSA-C). pp. 173–180. https://doi.org/10.1109/ICSA-C50368.2020.00038

16. Pedraza-Garćıa, G., Noël, R., Matalonga, S., Astudillo, H., Fernandez, E.B.: Mitigating secu-
rity threats using tactics and patterns: a controlled experiment. In: Proccedings of the 10th
European Conference on Software Architecture Workshops. pp. 1–7. ECSAW ’16 (Nov 2016).
https://doi.org/10.1145/2993412.3007552

17. Saarela, M., Hosseinzadeh, S., Hyrynsalmi, S., Leppänen, V.: Measuring Software Security from the
Design of Software. In: Proceedings of the 18th International Conference on Computer Systems and
Technologies. pp. 179–186. CompSysTech’17 (Jun 2017). https://doi.org/10.1145/3134302.3134334

18. Schumacher, M., Fernandez-Buglioni, E., Hybertson, D., Buschmann, F., Sommerlad, P.: Security Pat-
terns: Integrating Security and Systems Engineering. Wiley (Feb 2006)

19. Sejfia, A., Medvidović, N.: Strategies for Pattern-Based Detection of Architecturally-Relevant Software
Vulnerabilities. In: 2020 IEEE International Conference on Software Architecture (ICSA). pp. 92–102
(Mar 2020). https://doi.org/10.1109/ICSA47634.2020.00017

20. Yskout, K., Scandariato, R., Joosen, W.: Do security patterns really help designers? In: Proceedings of
the 37th International Conference on Software Engineering - Volume 1. pp. 292–302. ICSE ’15 (May
2015). https://doi.org/10.1109/ICSE.2015.49

https://doi.org/10.1109/ICSA-C50368.2020.00024
https://doi.org/10.1145/1774088.1774504
https://doi.org/10.1016/j.jss.2020.110726
https://doi.org/10.1109/ICSE.2019.00024
https://doi.org/10.1145/3307630.3342384
https://doi.org/10.1016/j.infsof.2018.07.014
https://doi.org/10.1109/EDOCW.2018.00026
https://doi.org/10.1109/ICSA47634.2020.00012
https://doi.org/10.1016/j.infsof.2018.05.011
https://doi.org/10.1109/ICSA-C50368.2020.00038
https://doi.org/10.1145/2993412.3007552
https://doi.org/10.1145/3134302.3134334
https://doi.org/10.1109/ICSA47634.2020.00017
https://doi.org/10.1109/ICSE.2015.49

